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ABSTRACT

The problem of determining the growth of a turbulent boundary layer
under conditions occurring on ramjet air-intakes is discussed in the intro-
duction. Under “analysis,” the compressible integral momentum equation
is transformed to an equivalent incompressible plane, adopting approxi-
mate temperature-velocity relations of the Crocco and van Driest form. A
semiempirical auxiliary equation, developed by M. R. Head for incompres-
sible flow and using the concept of mass entrainment into the boundary layer,
is rearranged for use in the transformed plane. The theoretical results
obtained by this method are then compared to McLafferty’s lag-length
theory, and to experimental data obtained by C. E. Kepler and R. L.
O’Brien. It is seen that the mass-entrainment theory is in good qualitative
agreement with the reported data, and in reasonable quantitative agreement.
The latter may be improved by postulating a relationship between tem-
perature and velocity in the boundary layer which is in closer agreement
with experiment. It appears that the mass-entrainment theory indicates
the point of separation of the compressible, turbulent boundary layer, in
accordance with conventional incompressible separation criteria.

INTRODUCTION

The study of turbulent boundary layers is generally recognized to be a
task of more than slight complexity, for the random eddying motion of the
turbulent fluid is not amenable to simple mathematical description. In
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addition, such phenomena as shearing stresses and heat transfer across a
turbulent layer are no longer proportional to parameters which are prop-
erties of the fluid alone, as in the case of laminar flows.

Additional complexities, such as compressibility of the fluid, adverse
pressure gradients in the flow direction, heat transfer between the fluid
and its bounding surface, centrifugal forces acting on the fluid and surface
roughness are often engineering realities which cannot be ignored. An
example of the necessity of knowing accurately the behaviour of boundary
layers under these and other conditions is found in the study of supersonic
combustion ramjets. The inlet diffuser of such a ramjet is a curved surface
over which flows a compressible fluid under an adverse pressure gradient.
Due to the high recovery temperatures of high-speed flight, the inlet surface
must necessarily be cooled, thus causing heat transfer from the fluid to the
surface. These are the basic conditions experienced by a turbulent boundary
layer on a ramjet diffuser, and consequencly comprise the parameters of
this analysis.

ANALYSIS

The shear stress distribution is not known analytically for turbulent
motion. Therefore the averaged or integral method is widely used in
analyzing turbulent boundary layers, since a knowledge of the shear stress
variation is not required in this method. Calculation procedures using
integral methods for the problem of compressible turbulent boundary
layers under the effects of pressure gradients and heat transfer have been
suggested by a great number of workers, among them Reshotko and
Tucker, McLafferty and Barber, Stroud and Coleman, and Sivells and
Payne [5,7,8,4].

In the following analysis an ideal gas has been assumed, with a specific
heat ratio of 1.4. It was felt that the ideal gas characteristics were suffi-
ciently accurate in the thermodynamic regime covered by the experi-
mental results, and that allowances for real gas effects would therefore
needlessly complicate the analysis. Some real gas effects may be included
without too much alteration or difficulty.

MOMENTUM EQUATION

The integral momentum equation for compressible turbulent flow is
obtained by integrating the Prandtl momentum equation across the
boundary layer thickness [9]. If the turbulent flow properties are repre-
sented as the sum of time-mean values and fluctuating components, then
certain terms involving the fluctuating components appear in the integral
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momentum equation [6]. These terms usually may be neglected except in
the region of separation or in the presence of large centrifugal forces acting
on the fluid [1,6]. In Ref. 1 it is observed that these fluctuation terms,
which include the variation of static pressure in the direction normal to a
curved compression surface, may be neglected for moderately curved
surfaces. Thus, the compressible integral momentum equation becomes

dg | 0 dll, (2 +H - Mi) _¢ @)+
de "M, dz Tof T T2

Normal pressure gradients due to centrifugal forces may be neglected on
compression surfaces where the radii of curvature are large in comparison
with the boundary layer thickness.

The skin friction coefficient '; must also be defined for turbulent flow.
In the present analysis, the Ludwig-Tillman equation for incompressible
flow is used, with fluid properties evaluated at Eckert’s reference tempera-
ture, following the procedure of Ref. 5. The resulting expression employing
Sutherland’s law of viscosity is

G _
2 .
7 (TN (T, + 198)°2° 3)
5 - TH. —0.268 L e L 7 0 <
0.123 exp (—1.56 H1) (U.0:po/ o) T, <T0> (Tr ¥ 198)

and is substituted into Eq. (2) in this form.

The momentum equation is now transformed to a form similar to the
integral momentum equation for incompressible flow. A modified Stewart-
son transformation is used. Defining the transformation for the normal
coordinate by

A =202 1y (4)

and by equating the compressible stream function to the transformed
stream function, the result

U=, (5)

a,

is obtained.
Under the transformation, the velocity ratio w/wu, is equal to the ratio of
transformed velocities (7/7,.

*There is no Eq. (1) [Id.]
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Employing the Stewartson transformation to the integral boundary
layer quantities, then, and recalling that the static pressure remains
constant through the boundary layer, the transformed integral parameters

are defined [4] as

7.\
b: = (To) g

Al U)
* A S8 I
b = A(To v. ) ©)
(See App. A)
_ o, _To Ty _
Hy = 9, H = TeH"+ T, 1

Substituting Eqs. (6) into the compressible momentum equation (2), the
transformed momentum equation is obtained

do; 6. dM. _G (2)
ae T @ HSD =5 \7, @)

This transformed equation is still not of the form of the incompressible
momentum equation, however, since the transformation of the longitudinal
coordinate “2”” is undefined, and since the friction coefficient term is not
equivalent to the incompressible skin friction. In addition, the transformed
shape factor must be related to an equivalent incompressible shape factor
in order to determine its variation.

TEMPERATURE DISTRIBUTION

A relationship between temperature and velocity at any point in the
boundary layer is now required in order to relate the transformed shape
factor to an equivalent incompressible shape factor (Appendix B).

Such a temperature-velocity relationship was obtained by Crocco as an
exact solution of the momentum and energy equations under zero pressure
gradient, assuming a Prandtl number of unity. Van Driest also obtained a
similar relationship for a non-unit Prandtl number, although he assumed
that the thermal boundary layer was the same thickness as the velocity
layer. The first of these analyses resulted in a linear relationship between
temperature and velocity, of the form

T, u
To_a+bue (8)

with a and b constant.
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Van Driest’s equation was a quadratic in velocity ratio,

T 2
T, = +bf+0<ue> (9)

The second derivative of this relation is positive, after evaluation of the
constants from the boundary conditions.

However, under adverse pressure gradients, temperature-velocity curves
obtained from experiments [1] exhibit a negative second derivative. It
appears that the temperature distribution is at least of second order in
velocity ratio, and has coefficients which yield negative second derivatives
when the pressure gradient is considered.

The difficulty in obtaining an equation for the temperature distribution
suggests the use of a simpler, although less accurate approximation.
Consequently, both the Crocco and van Driest temperature distributions
were used. Since the temperature distribution appears in integral or
averaged relations only, the resulting error is not too severe.

AUXILIARY EQUATION

In either the compressible or transformed momentum equations, it is
still necessary to evaluate the shape parameter H. Since this shape factor
varies with the growth of the boundary layer, an equation defining its
variation must be obtained.

Such an equation is empirical, however, since the physical concepts of
conservation of momentum, energy, and mass do not yield a relation
involving the variation of shape factor. Consequently, many different
empirical or semiempirical equations have been suggested [4,5,7,9].

A concept of the rate of entrainment of external flow into the incom-
pressible turbulent boundary layer, suggested by M. R. Head (2], has led
to the formulation of another auxiliary equation for the shape factor
variation. Head’s auxiliary equation is a more promising approach to the
problem since it involves the investigation of a physical phenomenon
which is the basis of boundary-layer growth.

Head himself has demonstrated that the present form of his auxiliary
equation yields relations which are very nearly the same as other forms of
the auxiliary equation. Yet since Head’s form of the equation is obtained
from a consideration of the physics of the boundary layer, it merits closer
attention and study in the future.

In his derivation (2] Head assumes that the rate of entrainment into a
turbulent boundary layer depends upon a boundary-layer thickness
parameter, the free stream velocity and the velocity distribution in the
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outer portion of the layer. Using nondimensional terms, Head arrived at a
form of the auxiliary equation
d dM. (10)

d—} (A—A*)=F — (A — A*)/ﬂ{ed—X

Using the experimental results of several papers, Head obtained an
empirical correlation between the function F and the shape factor
Hy _ 2= (A — A%)/6,, and a correlation between H, _ 2» and H,;, Figs.
5 and 6. It should be emphasized that these results were obtained for
incompressible flow.

SOLUTION OF THE EQUATIONS

The transformation of the momentum equation is completed by defining
the x-coordinate transformation as

X T, (Te>3 (;;,)"-2“ (Ref. 3 and

dr ~ T, \T, Ko Appendix C)

and by relating the transformed and equivalent incompressible shape
factors (Appendix B).

Head’s auxiliary equation, Eq. (10), is put into workable form by fitting
equations to the curves in Figs. 5 and 6. The equations so obtained are

Ha o = 1535 (H, — 0.7)7*7"° + 3.3 (11)
corresponding to Iig. 6, and
F = 0.0306 (Hs_p» — 3.0)7°% (12)

corresponding to Iig. 5.
The resulting form of the auxiliary equation is

A (= OD'"(FAX _ Hs dM.  Hucs dif) (13)
dx 4.17 0; dx M. dx 6; dx ’

where H, _ 4+ and F are given by Egs. (11) and (12). The derivation of this
form is presented in Appendix C.

The momentum and auxiliary equations were solved using a simul-
taneous numerical solution of the Runge-Kutta type. The integral parame-
ters so computed were then transformed to the compressible plane by
means of Eq. (6).
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COMPARISON WITH EXPERIMENT

A comparison of the calculation results with experiment will be limited
to the one set of data obtained by Kepler and O’Brien [1] on a Mach 6
isentropic compression ramp at two wall temperatures. Although this data
appear to be quite precise, any conslusions which are drawn on the basis
of such a limited comparison must necessarily be speculative in nature.

An examination of the velocity profiles reported by Kepler and O’Brien,
Figs. 1 and 2, indicates a full profile for both the uncooled and cooled
surfaces at the initiation of compression, and inflected profiles for both
wall temperatures in the final stages of compression.

Using such profiles in conjunction with total temperature profiles
obtained by Kepler and O’Brien at five stations on the compression
surface, temperature-velocity curves were plotted. EExamples of these are
given in Figs. 3 and 4. It was observed that the van Driest temperature-
velocity relation provided good agreement with the experimental points
over more than half of the compression surface for the uncooled wall
condition. In the case of the cooled wall, neither the van Driest nor the
Crocco relation lay among the experimental points, but the Crocco distri-
bution was the nearer of the two. Consequently, in accordance with the
argument set forth in the section “Analysis,”” the van Driest relation was
used for the calculation of the uncooled boundary layer, and the Crocco
equation for the cooled layer.

The calculation results are shown in Iigs. 7 and 8. These curves indicate
a better qualitative than quantitative agreement with experiment, although
the uncooled wall results are in reasonable proximity to the experimental
points. This is believed to be due to the closer agreement between the van
Driest temperature distribution and experiment in the uncooled wall case,
than between the Crocco relation and experiment in the cooled boundary
layer. As a check on this assumption, the van Driest relation, giving even
poorer agreement with experiment than the Crocco equation (Ig. 4) was
used in the cooled wall calculation. The values of both the momentum
thickness and displacement thickness were found to be lower at all points
on the compression surface than those obtained using the Crocco relation.
Although the difference was not great (of the order of 5 per cent) it was
significant enough to indicate that a closer approximation to the true
temperature-velocity relationship would yield better values of the integral
parameters.

The calculation of the integral parameters using MeLafferty's lag-length
procedure was performed by Kepler and O’Brien, and is shown in Iigs. 7
and 8. It is noted that the results of the lag-length theory indicate no
increase in either the momentum thickness or displacement thickness in



1108 FOURTH CONGRESS — AERONAUTICAL SCIENCES

1.0 l | l

o T,/T,+ 082
o t 045

Y - IN.
®

i

o))

[4))

D

DISTANCE NORMAL TO SURFACE,
w

1

o 4 4 6 8 1.0
VELOCITY RATIO, U/Ug

Figure 1. Velocity profiles at start of compression, from Ref. 1.
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the final stages of compression, as is shown by the experimental data. The
mass-entrainment method, however, does indicate such an increase, or at
least a levelling-off, of the integral values in this region. The value of the
equivalent imcompressible shape factor, I{,, was between 2.4 and 5.0 at
this point, and was increasing rapidly. Such behaviour of the shape factor
in incompressible flow is generally accepted as a criterion of incipient
separation. Although Kepler and O’Brien reported no occurrence of
separation in their experiment [1]; the existence of inflected profiles and
the increase of integral values suggest that separation was approaching.
As was pointed out in Ref. 1, the expansion of the flow at the end of the
compression surface, occurring when the flow was returned to its original
direction, could well have influenced the behaviour of the boundary layer
in this region. The influence would be exhibited mainly in the subsonic
portion of the boundary layer near the wall, and would have the effect of
relaxing the inflected velocity profile, thus discouraging separation.

The calculation of the boundary layer presented here is a first order con-
sideration. The addition of the displacement thickness to the surface
profile would modify the Mach number distribution, especially near the
end of compression where the displacement thickness increases rapidly.
In this region, the modification would result in a locally increased adverse
pressure gradient. One would expect that this result would tend to increase
the values of the integral parameters in this area.

CONCLUSIONS

The conclusions reached in the preceding discussion may be summarized
as follows:

1. The concept of mass entrainment by a turbulent boundary layer
appears to provide the basis of a suitable auxiliary equation for
calculation of the shape parameter / of the boundary layer. Ikm-
pirical relations deseribing such an entrainment in incompressible
flow are applicable to compressible flows as well, through a suitably
defined mathematical transformation. The good qualitative agree-
ment between experiment and theory obtained through this concept
suggests that the entrainment relationship should be investigated
further, and established on a better theoretical and mathematical
basis.

2. Better quantitative theoretical results may be expected if a tem-
perature-velocity relationship, providing closer agreement with
experiment than the Crocco or van Driest form, is used. This implies
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the inclusion of pressure gradient and heat transfer effects in such a
relationship.

3. The mass entrainment method indicates separation of the boundary
layer in a region where inflected velocity profiles and increasing
values of integral parameters were observed in experiment. Separa-
tion was indicated by the behaviour of the incompressible shape
factor H,, in accordance with the usual criteria for incompressible
flow. Further comparison with experiments must be undertaken
before the capability of this method to predict incipient separation
is established.

SYMBOLS
a, b, c constant coeflicients
ey Ay sound speed at temperatures 7', and 71’ respectively
Cy local skin friction coefficient
F nondimensional mass entrainment rate, Ref. 2
H compressible shape factor
H transformed shape factor
H; equivalent incompressible shape factor
Hp _ A shape factor associated with entrainment rate, Ref. 2
q = pu;
M, Mach number at outer edge of boundary layer
T static temperature at height y in boundary layer
T, total temperature at height y in boundary layer
i static temperature at outer edge of boundary layer
T total temperature of external flow
Taw adiabatic wall temperature
T, wall temperature
T, reference temperature
u compressible longitudinal velocity
U transformed longitudinal velocity
x longitudinal coordinate parallel to wall
X transformed longitudinal coordinate
Y coordinate normal to wall
Y transformed normal coordinate
0% specific heat ratio
1} boundary-layer thickness
o* compressible displacement thickness
ox transformed displacement thickness

o* incompressible displacement thickness
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compressible momentum thickness

transformed or incompressible momentum thickness
absolute viscosity

density

transformed boundary-layer thickness

D> D
-

Lo ®

SUBSCRIPTS

outer edge of boundary layer
evaluated at total temperature
evaluated at reference temperature
incompressible

~. 8 o

APPENDIX A

DERIVATION OF TRANSFORMED INTEGRAL PARAMETERS
USING STEWARTSON’S TRANSFORMATION

(a) Momentum Thickness

= /ﬁi(l _zt,)dy
0 Pnur U,

Substituting Eq. (4), and recalling that u/u, = U/U,, we have

A
_ pao ,Q( __(L), .
b= P, /o U. ! U. ¢l

where A is the transformed boundary-layer thickness. With v = 1.4, this

By definition

becomes
_ 73_))3
6 = (’1',- 01 (Al)
where
Ay
U < U )
— Do — = 2
0, /” U. 1 U, dY (A2)
S0

.\
9, =6 <F—0> (A3)
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(b) Displacement Thickness

8
o= [
0
8
o* = /A(BE_}(L
0 Pe P Ue

Again using Eq. (4), we obtain

A
5% — Pode (
“Pele Jo

By definition

L
peU e> dy

o

or

&_g)
) U. dY

By assuming constant static pressure normal to the wall,

pe _ T
p P
and
DNACETS
* = ] —— — | ———
B 6 (Te 0 Te l}c dY
Now
zﬂ_ﬁ[g m2<g)1
Te N Te To 2CpT0 Ue
_&[g_@_r§(QYJ
T T, LT, To U.
So
_E_Q_ﬂ£_<&_0(ly_i
T, U, T.T, 7. U. U.
_ DT, &£+&g_eyﬁx
- r.T, T.U. T.U, T.
Gathering terms
U
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then
@) TG0 )
¢ (Te JLr\r, v ) T \e. Y v\ w1
or
SINCEN
* -9 ZU ok e i F
o* = (Te T, otr + T. 1)6; (A4)
using Eq. (A2) and defining
A
T U
* _ s U
e /(T Ue> ¥ (43)
Now, using Eq. (A4) and (A1), we obtain
_r_ T Ty _
H = g TeH" + T, 1 (A6)
where
&
H, = 9.
APPENDIX B

DERIVATION OF RELATIONS BETWEEN SHAPL FACTORS

(a) Crocco Temperature Distribution
From Eq. (8) we have

T,

u U
Fo_ a+b v = a—+b U,

where, from boundary conditions,

T -1 _Tw_, _
a—To b=1 To_l a
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Then, in Eq. (A5),
A ; .
8 = f [a+ ( —a)—°~——b—]dy
0 U.
A
U
- [, “(1 - U)dy

or
where

Now, from Eq. (6)
H, = o _Twot _ T,
Then, from Eq. (A6)
=gt =
(b) van Driest Temperature Distribution

From Eq. (9) we have

/N u wY _ U (
To—(a+b)u,+c<u> —(a-|—b)U¢+c

1%
U.

e

where the coefficients are defined as

and thus

:

(B1)

(B2)
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Then, in Eq. (A5),

vt (&) -]
62‘,=/0|:a+a(1—c—a)+c v.) ~U. Yy

E6-8)- 86D

8k = ad* — c0;

So

Then, from Eq. (6)

T N
H"=aH,-—c—T0H,-+ To 1 (B3)
and from Eq. (A6)
T, Taw
H—TeHi-i-Te—l (B4)
APPENDIX C

DEVELOPMENT OF MOMENTUM AND AUXILIARY EQUATIONS

(a) Momentum Equation

From Eq. (7)

a: . o, ar. _ ¢, (1.
E-*-M¢ (2+Htr) dx = 2 (TO)

or

do; | 0: dMg_@Qj<ﬂ>3_gz-
ax T, CHH) G = x5 \7,) =32 ¢

by transforming the longitudinal coordinate x. Thus

dX _ 2 \T,

dx Cy .
5 ¢
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where
. - Ny —0.268
Sl = 0,198 g1 (—4’0>
2 Mo

Then, using Eq. (3),

‘2( B T_ﬂ (T_T>0.402 <Toi_—198>0.268 <T_£>3
de T, \T, T, + 198 T,

Q B Z_C 2 3 <£T>0.268 ‘
dx N 7 <T0> Mo ((/1)

(b) Head’s Auxiliary Equation

or

From Eq. (10)

d (A — A%) dl,

. — AEY — _
ax & — &) =F M. dX
but
A — A*
Hy s+ = 9,
SO
d _ g Hanb:dM.
dX (Hast:) = F M, dX
or
d _ pdX _ 0Hsy s dM,
dx (Ha-n6:) = F dz M, dx
Then
dHa s _ dX  0.Hs o dM. L db:
0 g ~Far = . dr Mg
or

dHy n» _ FdX HawdM, Hy adb,
dx 0. dx M., dx 0, dx
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but
dlly s _ oMy x dH,
dx IH,; dx
and, from Eq. (11)
QZIAfA‘ e - o —3.715
ol = 417 (H; — 0.7)
)
dH; _ (= 0.1 (rd_)_( _HswdM. Hys 4&) (C2)
dx 4.17 0, dx M, dx

where dX /dx is given by IBq. (C1).
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COMMENTARY

D. G. CLARK (Cambridge Unuwversity, Ingineering Laboratory, Cambridge,
England): Mr. Standen and delegates may be interested to know that further
work on Head’s method for the calculation of // has now been done at Cambridge
by Dr. B. G. J. Thompson.

Thompson first examined existing methods for calculating [, using published
experimental data for comparison. He found that the entrainment method gave a
clear improvement over others in almost all cases, and, in addition, some accepted
methods failed completely in certain circumstances.

Thompson has since modified Head’s methods to give improved results in
certain very exacting cases, and is now extending it to include the effects of dis-
tributed suction or blowing. As pointed out in the original paper, the concept of
mass entrainment is well-suited to this more general application.

In the above connection, Thompson has also developed a new family of velocity
profiles and an associated skin friction law. These too appear to be in good agree-
ment with available experimental data.

It is hoped to publish these developments shortly and it is to be hoped that they
also will be suitable for use with a transformation for application to the supersonic
case.





